

ckSCADA

Indices and tables

	Index

	Module Index

	Search Page

Admin Client

The admin client is a web based interface for you to modify/view system
configuration. This includes:-

	IO Device configuration

	Point/Object/Class Configuration

	Kafka Monitoring

Server Overview

The server package provides the basic functionality of getting data from
the IO devices into Kafka, monitoring the IO device processes and providing an
api for the admin client to query the configuration.

ckAgent

The ckAgent process is the main process to be run on each of the I/O Server.
It creates the IO Device processes as they are requested. Once the IO device
process is created then it is left to the IO device to handle redundancy,
io polling, enabling/disabling of the device.

Todo

ckAgent should be able to open the configuration file and load the server
config

Todo

ckAgent should be able to poll other online ckAgent process to get a copy
of the configuration.

The ckagent process can be run using the command

python3 ckagent.py --configfile ../../config/'config.json'

This will create the ckAgent process and have it wait for messages.

ckAgentDevice

Currently there is only the simulation IO device type available with the plan
to include an OPC DA, OPC UA as well as a Modbus device as soon as the base
logic has been tested and has proven itself.

Todo

This is by design to limit the out of the box usefulness until it is safer to be
used in production

When an IO device is created you are able to specify the replication factor
for that device. The ckAgent process creates the IO device and monitors the
others servers for similar online devices. The replication factor defines how
many active instances of this IO device should be available.

If there is less instances available then what has been configured a new IO device
will come online if available.

The main interface to modify IO devices is through the Admin Client
however there are also Command Line Tools available to programatically
modify them.

config.json

The config.json file is used to store the projects configuration. It can be
stored anywhere. An example is included in the ckscada-client/config and
ckscada-servers/config folders.

The file is written in JSON. The following structures can be defined in the file.

brokers - contains a dictionary of Kafka brokers. This is to bootstrap
the connection between the client or server and the Kafka cluster. Once a
connection has been established a list of available brokers in the cluster
is downloaded.

The nodeId is the id assigned to the node within the Kafka Configuration

The host is the ip address or server name. When using a server name make sure
it is configured in your hosts file so you don’t rely on a DNS.

The port is the port that is configured within the Kafka Configuration on the
server.

"brokers": [
 {
 "nodeId": <nodeid>,
 "host": "<ip adderess>",
 "port": <port>
 }
]

Todo

Add additional configuration to the config file to be used as the base configuration
when starting the system. This file should be able to be exported from a
running Kafka System via the Admin Client.

Viewer Overview

ckViewer is the operators interface to the running ckSCADA system. It is based
around an embedded web browser. This allows for the flexibility of using open
web standards to display infomation to the operator such as HTML5 and SVG. It
also allows animation frameworks to be used such as Anime.

During development inkscape has been used to develop SVG graphics. This seems
to work well as it provides a professional drawing package which is very flexible.
There are some attributes and elements such as the cktag, ckparameter and ckscript
classes that are required to be added manually so that ckSCADA points can be
shown on the screen. This can be done within the inkscape xml editor window.

When a page is loaded the viewer will first search for any <image> elements which
also have a class attribute of ckobject. It will then use name attribute
and replace all references of $Object within a copy of the linked file
with the object in the name attribute. This copy then gets embedded within
the page so the external file doesn’t need to be read each time the tag is updated.

<image width="50px" height="50px" x="100px" y="100px" class="ckobject" xlink:href="svg/Motor.svg" object="Simulated.Flow.Transmitter"/>

It will then search for elements with the cktag attribute and create a list
of tags that are used on the screen. It will then subsribe to the Kafka topics
for each tag.

<text class="cktag" name="Simulated.Flow.Transmitter.Scaled!eu" style="fill: 'black'; font-family: "Roboto Slab"; font-size: 12px; white-space: pre;" x="420" y="300"><title>Test</title>####</text>

When a message is recieved on one of these topics, the elements associated with
that topic are updated. When using the ckatg class attirbute the text content of
that element is updated with the new value.

When specifying the cktag class the name attribute specifies the tag. The tag
is a combination of the Kafka topic name and the attribute from recieved message.
such as Simulated.Flow.Transmitter.Raw!value when Simulated.Flow.Transmitter.Raw
is the topic and value is the attribute. This allows for several attributes to
be sent within the same message.

The ckscript element can also be used to include script behaviour which is run
when the included ckparameter topics are updated.

Todo

Add the ability to include multiple ckparameter element per script.

<text class="cktag" name="Simulated.Flow.Transmitter.Stored!value" style="fill: 'black'; font-family: "Roboto Slab"; font-size: 12px; white-space: pre;" x="500" y="300">
 <title>Test</title>
 <g class="ckparameter">Simulated.Flow.Transmitter.Raw!value</g>
 <g class="ckscript">if (this.v > 50) {
 this.e.style.fill = "red";
 } else {
 this.e.style.fill = "green";
 };
 </g>
 ####
</text>

This allows for updating specific attrbutes of the element when tags are updated
such as background colour, position, etc..

As these scripts are run on every update of the tag these scripts should be kept
as short as possible with the tag update rate being taken into account. If the
tag is updated every 10ms then is doesn’t leave much time for the script to run.
If it is updated every 1-2 seconds the script can be made longer.

Client Installation

Viewer Only

To install the viewer download the Node.js package from nodejs.org for your
operating system.

For Windows you will need to install node.js manually as well as python 3. You
can then install kafka-python with pip. Then manually install node.js dependancies
using

cd ckscada-client
npm install .

For Debian/Ubuntu use apt to install it

sudo apt install npm
sudo npm install -g npm-cache

Following this, download the ckscada package and build the npm packages.

cd ckSCADA
make

Edit the config.json file in the config folder.
Include the nodeId, ip address and the port of one of your Kafka brokers.

Assuming you have already setup your server you should then be able to run the viewer.

cd ckscada-client
npm start

This will open the welcome.svg screen and then open the Sample-Screen.svg file.
This is just an example page using built-in tags from the standard server install.
For production you will need to create your own HMI pages.

Server Installation

To install the server components.

Firstly make sure your Kafka broker/clusetr has been setup already. The server
components should be able to be run on the Kafka broker.

For Windows you will need to install node.js manually as well as python 3. You
can then install kafka-python with pip and manually install node.js dependancies
using

npm install .

in the ckscada-client and ckscada-server/admin-client folders.

For Debian/Ubuntu use apt to install it

sudo apt install npm python3
sudo npm install -g npm-cache
pip3 install kafka-python

Following this, download the ckscada package and build the npm packages.

cd ckSCADA
make

Edit the config.json file in the config folder.
Include the nodeId, ip address and the port of one of your Kafka brokers.

We will next run the server components.

cd ckscada-server/server/src
python3 ckagent.py --config ../../config/config.json

cd ckscada-server/admin-server/src
python3 points.py --config ../../config/test.json

cd ckscada-server/admin-client
npm start .

There is a helper script to setup a few tags on simulation device and start
publishing them the sample page on the client uses these.

cd ckscada-server/server/src
./simulate_plant.sh

Command Line Tools

Create IO Device

An I/O server is the machine that hosts the main ckAgent process. Only on
ckAgent process can be run per server.

Note

IO servers can be any server and need not be the same server the kafka broker
is on.

Admin-Client

	
getTopicList(topic, filter, callback, setProgress)

	Get list from server using a string filter. It also updates the status bar.

	
class App(props)

	Main React Class

Main constructor

	
App.addCopyEventListener()

	Listens for the broswer copy command triggered by either Ctrl+C or from the
browser menu.

Copies the current filtered list to the clipboard.

	
App.convertListtoTabDelimited(list)

	Convert a json list to a tab delimited string.

Converts flat json file to a tab delimited string.

	Arguments

	
	list – json string

	
App.displayPage(topic)

	Shows a specific page within the main area

This sets the show state within the List React Component. This then doesn’t
render the page.

	Arguments

	
	topic (string) – name of the page to display e.g. topics, points, devices.

	
App.getCurrentPage()

	Gets the reference to the currently shown page.

Checks the show state of each page and returns the reference to the List Component.

	Returns

	ObjectListComponent –

	
App.queryFilteredList(ref)

	Requests an update of the currently displayed list from the servers.

A request is sent to the web server which then broadcasts a request to update
the list. This is then passed back and stored within an object list.

	Arguments

	
	ref (event) – reference to the event that triggered the update. Expecting an on key press event.

Admin-Server

	
ckadmincommon.log(s)

	

Server

The server package provides the basic functionality of getting data from
the IO devices, monitoring the IO device processes and providing an api for th
e admin server to query the configuration.

It initially opens a Kafka consumer process and waits for configuration messages
on the default admin topic ‘_admin’.

The ckAgent listens for messages on the ‘_admin’ topic. The following messages
will be acted upon:-

	add - This adds an IO device.

	del - This deletes an IO device.

	get - This gets the agents configuration and publishes it on the same topic.

Todo list

Todo

Add the ability to include multiple ckparameter element per script.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/ckscada/checkouts/latest/docs/source/about/viewer.rst, line 48.)

Todo

ckAgent should be able to open the configuration file and load the server
config

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/ckscada/checkouts/latest/docs/source/about/server.rst, line 18.)

Todo

ckAgent should be able to poll other online ckAgent process to get a copy
of the configuration.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/ckscada/checkouts/latest/docs/source/about/server.rst, line 22.)

Todo

This is by design to limit the out of the box usefulness until it is safer to be
used in production

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/ckscada/checkouts/latest/docs/source/about/server.rst, line 41.)

Todo

Add additional configuration to the config file to be used as the base configuration
when starting the system. This file should be able to be exported from a
running Kafka System via the Admin Client.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/ckscada/checkouts/latest/docs/source/about/server.rst, line 91.)

Glossary

I/O Server

An I/O server is the machine that hosts the main ckAgent process. Only on
ckAgent process can be run per server.

Note

IO servers can be any server and need not be the same server the kafka broker
is on.

Kafka broker

A Kafka broker is a machine running Apache Kafka. This may be part of a larger
Kafka cluster or be a standalone broker.

IO Device

An IO device is an abstract class that reads data from a physical or simulated
device and sends this data to Kafka topics. The implementation left to then
specific IO device.

Index

 A
 | G

A

 	
 	App() (class)

 	App.addCopyEventListener() (App method)

 	App.convertListtoTabDelimited() (App method)

 	
 	App.displayPage() (App method)

 	App.getCurrentPage() (App method)

 	App.queryFilteredList() (App method)

G

 	
 	getTopicList() (built-in function)

 nav.xhtml

 Table of Contents

 		
 ckSCADA

_static/file.png

_static/minus.png

_static/plus.png

